

JX Series
with IF-12 Control Module

This information is proprietary to CYTEC Corp., and is not to
be used, caused to be used, reproduced, published or otherwise
used/or disclosed in any way that might be detrimental or
compromising to CYTEC Corp.

TABLE OF CONTENTS

1.0 ADDENDUM ... 6
2.0 GETTING STARTED ... 7
3.0 GENERAL ... 8

3.1 CHASSIS DESCRIPTION ... 8
3.2 SPECIFICATIONS ... 9
3.3 POWER SUPPLY ... 9

3.3.1 OPTIONAL POWER SUPPLY (EXPANSION/HP CHASSIS) .. 10
3.4 FRONT PANEL .. 10
3.5 MOTHERBOARDS .. 10

4.0 SWITCH MODULES ... 12
5.0 IF-12 GPIB / RS232 / LAN CONTROL MODULE ... 13

5.1 LAN INTERFACE .. 13
5.2 RS232 INTERFACE ... 14
5.3 IEEE488 INTERFACE ... 16

5.3.1 IEEE488.2 SPECIFIC MATRIX COMMANDS ... 17
5.4 CONFIGURING TCP/IP PARAMETERS FROM A SERIAL CONNECTION............................... 17
5.5 RUNNING THE CYTEC FACTORY APPLICATION ON THE IF12 ... 19
5.6 COMMAND FORMAT/COMPLETION ... 20

5.6.1 END OF LINE CHARACTER (EOL) .. 20
5.7 SETUP COMMANDS .. 21
5.8 SWITCH COMMANDS ... 22
5.9 STATUS COMMAND ... 25
5.10 INTERROGATE COMMAND ... 26
5.11 OTHER COMMANDS .. 26
5.12 INPUT / OUTPUT vs MODULE / SWITCH NOMENCLATURE ... 28
5.13 LIST MANAGEMENT ... 28
5.15 IF-12 (RS232/LAN/GPIB) DEFAULT CONFIGURATION SETTINGS .. 30
5.16 LCD DISPLAY/KEYPAD MANUAL CONTROL OPTION .. 31
5.17 MEMORY SANITATION PROCEDURE ... 33

APPENDIX - EXAMPLE PROGRAMS .. 34
Java LAN Programming Example: .. 34
C LAN Programming Example .. 36
LabWindows RS232 Programming Example ... 40
LabWindows GPIB Programming Example ... 45
LabView Drivers .. 54

DRAWINGS
(Shipped configuration included. Other schematics available on request)

DRWG # DESCRIPTION

4-058 Signal I/O Module Schematic

11-21-50 IF-12 LAN/RS232/GPIB Control Module Schematic

16-16-50 34 Pin Mesa II EIF Module

24-04-00 JX Expansion Chassis

24-20-00 JX Expansion Chassis High Power

24-20-30 JX Expansion Chassis High Power Wiring Diagram

24-21-00 JX/256 Mainframe Chassis

24-21-91 JX/256 Front and Rear Panel

24-21-30 JX/256 Power Supply Wiring Diagram

24-21-31 JX/256 Control Wiring Diagram

1.0 ADDENDUM

 This page is intentionally left blank

2.0 GETTING STARTED

Unpack the unit and make sure it has arrived undamaged. Inspect for dents, bent handles, major
scratches and missing or loose parts. Note that many of the items listed individually on the packing list
are already installed within the chassis, rather than being packed separately.

Compare the Shipped Configuration List on the last page of the Quick Start Guide that shipped with the
unit with the included packing slip to verify that all components and ordered parts have been received.
If any purchased items are missing please contact your Sales Representative at 585-381-4740 or
sales@cytec-ate.com. Utilize the Shipped Configuration List to identify which drawings and diagrams
refer to the specific unit ordered.

Next, set up the chassis on either a bench or rack. The front handles allow the unit to be bolted to a
standard 19 inch rack. No special setup tools are needed.

For AC powered units, a Power Cord should be included in the box. Plug one end into the chassis and
the other into a three prong commercial AC outlet. The unit will operate from one of two AC voltage
ranges: 100/140 or 200/260. There is a fuse holder built into the AC input that can be rotated to switch
between 110 VAC and 220 VAC.

Install the appropriate remote control cable to the controlling computer: RS232, IEEE488 (GPIB) or
Ethernet. Cytec provides a one to one RS232 D9 cable but does not provide Ethernet or GPIB cables with
the unit.

Turn the unit ON via the toggle switch located at the AC input. The front panel Power LED should
illuminate.

Study the sections of this manual which deal with your control interface (RS232 or Ethernet), as well as
the controlling command syntax. A group of programming examples are included in appendices at the
end of the manual and provide a good structure to work from. Drivers can also be downloaded from
Cytec’s web site at: http://www.cytec-ate.com/downloads

You should now be able to begin writing useful code. Always write and debug code thoroughly before
hooking up live signals to the matrix! This equipment gives you full control over what is switched to
where and will not prevent you from making potentially harmful connections. That is, nothing in the
system prevents the switching of excessive power, which can damage or destroy the relay contacts or
digital switches.

3.0 GENERAL

The JX Series may function as a high density 1xN multiplexer, a 2xM matrix, discrete switch
points or some combinations of these. This series is typically used for data acquisition,
component testing, bed of nails testers, and cable testers. A modular design concept is used, so
that interchangeable switch modules may be assembled into various sized matrices, multiplexers,
or individual switch point configurations. The JX Series switch modules (which are composed
of 1, or 2 pole relays) are capable of switching the following signals depending on the modules
chosen: Low level current to 1 picoamp, low level voltage with a DC offset less than 1
microvolt, high power to 2000 VA, and high current to 8 amps, and signals with a bandpass of
up to 80 MHz.

3.1 CHASSIS DESCRIPTION

The JX Series includes the JX/256 mainframe and expansion chassis. A mainframe is a stand-
alone unit which may be controlled either remotely (See Section 5.0) or via a keypad manual
control. An expansion chassis must be wired to and controlled via a MESA control chassis.

The JX/256 mainframe is shown on Drwg. #24-21-00. The JX chassis holds an 17-slot card
cage, a +5V power supply for driving the logic and a +12V power supply for driving the relays
(Section 3.3). The front panel may hold the optional keypad manual control with LCD Display.
The signal backplane motherboard (Section 3.5) interconnects the control and switch modules
and also busses signals from the switch modules (Section 4.0) to the signal I/O module (Section
4.6) located in the chassis’ last slot. Sixteen of the card cage’s seventeen slots hold switch
modules, while the last slot on the right, looking at it from the rear holds the signal I/O module.

A variety of available switch module types allow the system to be custom tailored to the user's
specific requirements. Each switch module is typically built with either 16 or 32
electromechanical or solid state relays, and input/output signals are wired to connectors located
at the rear edge of the module. Since the JX/256 chassis is modular, it may contain from one to
sixteen switch modules. The chassis must always one control module, and one signal I/O
module, however. The power supply operates from the AC line supply via a fused line cord
adapter on the rear panel which also supplies the ON/OFF Switch.

The expansion chassis (Drwg. #24-04-00) differs from the mainframe in that it cannot operate as
a stand-alone device and must be controlled remotely from a MESA control chassis. The JX/256
expansion chassis holds the same components as the JX/256 mainframe with two exceptions: the
+5V power supply is always absent and the control module is replaced by the expansion
interface module (Drwg. #4-041-1). The expansion interface module plugs into the JX/256
backplane and is wired out to the chassis interface connector on the rear panel. Note that the
JX/256 mainframe and expansion chassis differ from each other physically, and a mainframe
cannot be adapted for use as an expansion chassis (or vice-versa). Refer to the “Shipped
Configuration” sheet to determine which of the chassis drawing pertains to the system purchased.

3.2 SPECIFICATIONS

Dimensions: 19" Rack Mounting x 5.25" High x (15" or 11" Deep)
Weight: Maximum weight with full complement of modules less than 32 lbs.
Maximum Power: 110 W @ 100-130 Vac or 110 W @ 200-260 Vac

Environment:
Operating: 0C to 50C @ 95% Relative Humidity
Storage: -25C to 65C @ 95% Relative Humidity
Capacity: 16 Switch Modules, 1 Signal I/O Module & 1 Control Module per chassis
Expansion Capacity: Up to 16 Expansion Chassis with one MESA Unit
Display: 1 Power LED
Control Mode: TCP/IP & RS232 Standard; IEEE488 as option.

Break Before Make in Multiplexer Mode

Refer to Switch Module and Control Module sections of this manual for specifications on these
topics.

3.3 POWER SUPPLY

The JX/256 mainframe holds two power supplies as shown in Drwg. # 24-21-30. One power
supply (PS/5) provides 3.0 A at +5V and is used to power the logic circuitry. The second power
supply (PS/12) provides 3.4 A at +12V and is used to drive the relays.

The power supplies will operate from 100-140 volts or 200-260 volts at 47-63 Hz.

The power supplies are wired to the selectable AC input module on the rear panel, which also
holds the chassis’ ON/OFF switch. The user can select one of two AC voltage ranges: 110/120
Volts or 220/240 volts AC. To change the selected voltage, remove the fuse cartridge using a
small blade screw driver or a similar tool. Select the desired voltage by matching the arrow on
the fuse cartridge to the arrow located on the input module’s lower right corner. Replace the fuse
cartridge making sure the voltage selection arrow aligns with the arrow located on the Input
Module.

Two fuses are held in the fuse cartridge, with 220/240 VAC fused at 1.0 amp and 110/120 VAC
fused at 2.0 amp.

3.3.1 OPTIONAL POWER SUPPLY (EXPANSION/HP CHASSIS)

For the expansion chassis, power is normally supplied from the MESA controller via the
expansion interface module as shown in Drwg. #4-041-1. The JX expansion chassis may
be ordered with an optional internal +12 V, 3.4 A PS/12 power supply or a +12 V, 7.5
amp supply. This additional power supply will be included only when the power from
the MESA is not sufficient to drive all of the relays; as in the case when the user’s
application requires more than 150 relays to be closed simultaneously. This expansion
chassis, the JX/256-E-PS is shown in Drwg. #24-04-00 for the 3.4 A version and 24-20-
00 for the 7.5 A version.

3.4 FRONT PANEL

The JX/256 Mainframe’s front panel will have a Power LED if the unit does not have the
optional Keypad and LCD Display. If the Keypad and LCD have been ordered, there is no
separate Power LED (the LCD reports power status).

A JX/256-E Expansion chassis built with the optional +12V power supply will also have a front
panel Power LED.

3.5 MOTHERBOARDS

The JX/256 signal backplane Drwg. #24-08-50 is used to bus control signals from the control
module to the switch modules present in the system. The backplane also serves to bus the
signals from the switch modules to the signal I/O module. The backplane is comprised of
seventeen slots, the middle sixteen devoted to switch Modules, and one to a signal I/O module.

Power
Power is bussed to all 18 slots. Pins 4 and 19 on the backplane carry the ground signal and are
connected together, both on the backplane and on each individual module. The +5V logic
voltage is bussed on pin 5, likewise the +12V relay voltage is bussed on pin 18. These particular
bus lines have links at their midpoints, splitting them into two sections which can be operated
with separate power supplies.

Controls
The control module is located on the back of the front panel.

The controls for Switch Select, Latch/Unlatch, Mux/Clear, Switch Strobe, Status Strobe and
Status Output are also bussed to all module slots.

For module selection, the backplane can be considered in two sections with modules 0 through 7
in one section, and modules 8 through 15 in the other section. Module select 0 on pin 8 of the
control module is connected to pin 7 of switch modules 0 & 8. Similarly, module select 1 on pin

9 of the control module is connected to pin 7 of switch modules 1 & 9, and this pattern is
repeated for module select 2 through 7.

Bit 8_ on pin S of the control module is bussed to pin 15 of modules 0 through 7, and bit 8 on pin
16 of the control module is bussed to pin 15 of modules 8 through 15.

Signals
The backplane is bussed to handle 1, 2 or 3 pole relays, depending on the installed module type.
There are also two sets of bussing for each switch module, since each of these may be separated
into two separate 8 x 1 matrices.

Switches 0 through 7 are referenced as the "A" signals with Hi on pin #1, Lo on pin #2 and
Shield on pin #3. Switches 8 through 15 are referenced as the "B" signals with Hi on pin #22,
Lo on pin #21 and Shield on pin #20.

Although the third pole of the relay is referenced as Shield, as this is its most usual application, it
can be used for any signal type.

4.0 SWITCH MODULES

Cytec currently offers over 20 different switch modules for installation in the JX/256-MF and
JX/128-MF chassis. Connector options include D Subminiature, Header, or Screw Terminal
connectors. A selection of switch modules can be viewed at the following link to Cytec’s
website: https://cytec-ate.com/application-guide/general/general_purpose_mods/

Note that the ‘JX Modular Mux Test Systems’ item should be checked under the ‘Filters’
heading to display the switch modules for this system. Both Schematics and Data Sheets can be
accessed by clicking on the link located on the same line as the switch module name.

https://cytec-ate.com/application-guide/general/general_purpose_mods/

5.0 IF-12 GPIB / RS232 / LAN CONTROL MODULE

Introduction

CYTEC's IF-12 RS232/LAN Control Module is designed to control single chassis mainframes.
Three forms of remote control are available on the module: IEEE488 (GPIB), RS232 and
Ethernet LAN. An optional manual control is also available. All four interfaces may be active
and used simultaneously.

Interface options: GPIB, RS232 and LAN are standard, but the Manual Control must be specified
when purchasing the system. On some systems where panel space is limited, only two of the
three interface connectors may be included.

5.1 LAN INTERFACE

Dynamic IP Address (DHCP): The Cytec IF12 is set at the factory to attempt to obtain an
address from a DHCP server when the application boots. If you are connected to a network with
a DHCP server, then the device IP address, network mask and gateway should be configured
automatically. If your PC is on the same DHCP network, you will be able to communicate with
the device after a short boot period of less than 10 seconds.

Static IP Address: If the module is plugged in to a network that does not have a DHCP server,
you must provide a static IP address, network mask and gateway. These addresses should be
provided by your network administrator.

Auto IP Address: The factory application contains an auto IP negotiation system. This allows
the device to automatically configure its address in the absence of a central DHCP server, and
without the need for a static IP address. This scheme is utilized as a fallback that will activate
when both dynamic and static IP addresses fail to initialize. In order to communicate with a
device in auto IP mode, the host system must support auto IP. Auto IP support is included in
both Windows and OS X operating systems. By default, auto IP addressing starts in the
169.XXX.XXX.XXX address range.

Find Your Device: Our recommended option to locate the device is to use a local discover
utility. You can do this by navigating to the Cytec web site and downloading the tool
localdiscover.exe from https://cytec-ate.com/discover-cytec-local. The executable sends out a
request to all Cytec devices on the local network. It opens a browser page on the first device to
respond that lists all of the discovered devices, or a page that show that no devices were found.

Note: If these options are failing, there may be a firewall issue blocking the applications from
sending the UDP broadcast that is used to locate Cytec devices. Always grant Cytec applications
the ability to get through your OS firewall and ensure that UDP port 20034 is open for use.

https://cytec-ate.com/discover-cytec-local

5.2 RS232 INTERFACE

Signal Connections
The control module is pre-configured at the factory to operate as Data Communications
Equipment (DCE) per the EIA RS232D Standard. In this configuration, the module transmits on
the RxD Pin and receives on the TxD Pin. RTS is required to be high for the control module to
transmit and CTS is output high by the control module to indicate a ready for data state and low
when busy. The RS232 rear panel connector is a D9P (male) and can be run directly from a D9
computer COM port with a straight through (one to one) D9S to D9S cable. A null modem cable
will not work with the factory default settings! Adaptors are available at any computer store to
convert from D25 to D9. Do not use any adaptor that also acts as a null modem converter. If
you are building your own cables, consult CYTEC Corp., for D25 to D9 pin out conversion.

D9P (male) PIN OUTS
Pin Signal Function
 1 DCD Not Used.
 2 RxD Data out of Control Module.
 3 TxD Data in to Control Module.
 4 DTR Not Used
 5 Common Signal Ground.
 6 DSR Not Used
 7 RTS Control Module requires + V to transmit.
 8 CTS Control Module provides +V when ready
 9 RI Not Used

Find Your Device

Open Device Manager on Windows computers and navigate to Ports. The COM port number
will be bracketed next to the device description.

Configure Your Device

The RS232 interface can be accessed using any standard terminal emulation program such as
PuTTY which can be downloaded from putty.org. Enter the COM port number in the field for
the Serial line to connect to. The default values set at the factory are:

• Speed(baud): 9600
• Data bits: 8
• Stop bits: 1
• Parity: None
• Flow control: RTS/CTS (Hardware)

The first thing you should do is turn on Echo. This will enable you to see what you are typing.
Make sure you turn Echo back off when you are done with the terminal session. Echo being left
on will normally interfere with programs written specifically to control the switch.

Echo
Echos the characters back to your screen while you type them so you can see what you type.

Command: “E 0 73” Turns Echo Off
 “E 1 73” Turns Echo On

Answerback
Answerback allows the Control Module to return information to the COM port. Answerback
should almost always be left on. If Answerback is enabled, the Answerback byte must be read
back by the requesting device. Failure to do so could have unpredictable results.

Command: “A 0 73” Turns Answerback Off
 “A 1 73” Turns Answerback On

Verbose
Verbose causes the system to return more specific information when you request status or read
answerback characters. It is sometimes helpful when troubleshooting but it slows the interface
down a lot. While there may occasionally be a good reason to turn on Verbose during a puTTY
or Hyperterm session, it is almost never used in a programmatic interface. All of the same
information can be generated in code based on the non-verbose responses without slowing down
the RS232 interface.

Command: “V 0 73” Turns Verbose Off
 “V 1 73” Turns Verbose On

Baud Rate
Baud rate is set at the factory at 9600 Baud. Change is under software control and the control
module must be connected to a serial interface to effect the change.

Baud Baud# n
2400 4
4800 5
9600 6
19200 7
38400 8
57600 9
115200 10
230400 11 (untested, you should consider LAN)

Command: "P19 n 73"
 "P19 7 73" sets baud rate to 19200.

If the Baud rate is inadvertently set to an unknown rate, the default value may be restored. See
the section on Setting Defaults for the procedure. Obviously as soon as you reset the Cytec baud
rate you will no longer be able to communicate with the switch until you reset the baud rate on
your controlling computer or communication device.

CTS/RTS Handshake

The Clear to Send (CTS) and Request To Send (RTS) hardware handshaking functions may be
modified by the 'P6' command.

Command: "P6 handshake 73"

 handshake = 0 Handshaking off
 handshake = 1 Handshaking on (default)

Example

 "P6 0 73" Turn handshaking off.

5.3 IEEE488 INTERFACE

Also known as GPIB (General Purpose Interface Bus), IEEE-488 is the international standard for
a parallel interface used for attaching sensors and programmable instruments to a computer.
When connecting IEEE-488 cables, some rules apply. The total number of devices should be 15
or less. The total length of all cables should not exceed 2 meters multiplied by the number of
connected devices, up to a maximum of 20 meters. And no more than three connectors should be
stacked together.

Find Your Device

Our recommended option to locate the device is to use NI Measurement & Automation Explorer
(NI MAX), which can be downloaded from their website. Search for instruments in the
application and the Cytec device should be found at default GPIB address 7.

Configure Your Device

GPIB Address:

 Command syntax: “P14 n 73”.

For example, “P14 8 73” sets the GPIB address to 8.

5.3.1 IEEE488.2 SPECIFIC MATRIX COMMANDS

These commands are ignored by the RS232 interface.

*IDN? - Revision Number (Same as Cytec “N” - Revision Command)

Syntax: A*IDN?@

The 'IDN?' command will cause the matrix to return its current revision number followed
by an end of line.

Send: "*idn?" Request revision number.

 Receive: "Cytec VDX/32x32 11-01-13 1.0" eol Text string indicating rev.

*RST - Reset (same as C - Clear command)

The '*RST' command will clear (open all switches) in the matrix.

Send: "*rst" Reset.
 Receive: "0" eol Returns >0'.

5.4 CONFIGURING TCP/IP PARAMETERS FROM A SERIAL CONNECTION
To change parameters you will need to access the serial interface using any standard terminal
emulation program from the COM port on your computer. Once you have established a serial
connection the following commands can be used for configuration:

D command returns a list of current settings:

A1, E1, V0 Answerback = ON, Echo = ON, Verbose = OFF
Baudnumber = 6, RS Handshaking = 1
IP Address = 10.0.0.144
Netmask = 255.255.255.0
Gateway = 0.0.0.0
Port0 = 8080, Port1 = 8081
TCP idle = 60
Telnetlock = 0, Telnet Echo = 0
Battery Ram = 0, Default List = 0

IFConfig command is used to set the static IP address. The syntax for this command is:

ifconfig aaa.aaa.aaa.aaa nnn.nnn.nnn.nnn

a = ip address in dotted decimal format n = subnet mask in dotted decimal format

Example: ifconfig 10.0.0.100 255.0.0.0

Typing ifconfig and hitting the enter key will return the current settings.

Since you may be connected via Telnet to do this, the IP address will not actually change until
you reboot the Cytec switch. This helps prevent anyone from mistakenly setting the IP to an
unknown address by accident. It is a good idea to double check the settings with the D command
before you reboot.

HOSTS command sets the gateway for TCP/IP sockets. The syntax for this command is:

HOSTS xxx.xxx.xxx.xxx

Example: hosts 10.0.0.100

Typing hosts and hitting the enter key will return the current settings.

SNET TCP PORT command sets the Port number for TCP/IP sockets. The syntax for this
command is:

SNET TCP PORT n m where n = equals one of two sockets and m is the port number

Example:

snet tcp port 0 8088 socket 0 is port #8088
snet tcp port 1 8089 socket 1 is port #8089

Port numbers must be between 1024 and 65535.
The Telnet port (23) may also be available. See TELNETLOCK command.

SNET TCP Idle command sets the socket life for the connection. The syntax for this command
is:

SNET TCP Idle n (n=seconds) (1 to 3600 sec)
Default = 60 sec
SNET TCP Idle (display)
TCP Idle = 60
SNET TCP Idle 0 Socket never dies until the computer that established the socket kills it.

Setting the TCP Idle to 0 will force the socket to stay alive until the program that established the
socket kills it.

WARNING: This can lead to issues if there is a network disconnect or the computer that
established the socket locks up. If the computer that establishes the socket cannot kill the socket,
no one will be able to connect to the switch until the Cytec unit is rebooted.

TCPAnswerback – Answerback

Syntax: TCPANSWERBACK n n = 0, 1 or 2

Answerback will enable or disable the transmission of a single character followed by an
end of line upon the completion of all commands. The Answerback character will be a 1
or 0 depending on what command is sent. It is used to verify that the command was
accepted and can verify completion of relay control commands. See Section 5.5.2

Eg. "TCPANSWERBACK 0 " Turn answerback off.

 "TCPANSWERBACK 1 " Turn answerback on
 "TCPANSWERBACK 2 " Turn answerback plus terminator on

 Note: TCPANSWERBACK 2:
 This setting appends a set of square brackets to the answerback byte.

Eg. Send: "L0 0" Latch Module 0 Switch 0.
Receive: "1[]" End of line follows the terminator

5.5 RUNNING THE CYTEC FACTORY APPLICATION ON THE IF12

The factory application that is included with the IF12 Control module includes:

• System Parameter Settings
• Matrix Parameter Settings
• Remote Switch Control
• List/Config Management
• File Management
• Custom Labeling

The URL request in the browser should look like the following:

http://<Device IP>

Where <Device IP> is replaced with the corresponding IP address. For more information on
finding the IP address of your device, please see the device discovery section of this manual.

5.6 COMMAND FORMAT/COMPLETION

COMMAND FORMAT

All commands consist of at least one ASCII character indicating the command followed by
optional values. After the command string is sent, an End of Line Character must be sent to
affect the command.

If values are included with the command, the first value does not need to be separated from the
command; all subsequent values MUST be separated by spaces or commas, eg. L1 2.

Multiple commands may also be sent on one line. Commands must be separated by a semi-colon
character. Command line length is limited to 19 characters so avoid abusing this feature.

Examples: "L2 7;C" Connects Input 2 to Output 7 then clear
"U4 7;L 1 2" Unlatch Mod 4, Sw 7 then Latch Mod 1, Sw 2

COMMAND COMPLETION

A code representing the last requested switch point status (open or closed) and command
completion will be stored by the matrix.

If the LAN or RS232 answerback function is enabled, a single character followed by end of line
will be sent upon completion of all commands. Answerback may also include a termination
character.

Note: Command Completion is NOT updated until the matrix finishes the requested
operation.

Command Completion Codes – See Section 5.8 for error and completion codes

5.6.1 END OF LINE CHARACTER (EOL)

A received end of line character will cause the control module to execute the ASCII command
string. The end of line character may be sent as a carriage return (CR) or New Line / Line Feed
(NL/LF) for RS232 interfaces and a New Line / Line Feed (NL/LF) for IEEE488 interfaces or
LAN interfaces. The IEEE488 also allows for the END control line being true with the last data
character to initiate the command.

Valid end of Lines:
CR, LF or NL LAN, RS232 or IEEE488
CR and END IEEE488
LF/NL and END IEEE488

Note that the terms New Line and Line Feed are often used to mean the same thing.
Both are expressed as \n in most programming languages and are shown on the ASCII table as
“LF”.
LF = Line Feed / New Line represented as \n, on ASCII table it is Decimal 10, or Hex A (0xA).
CR = Carriage Return represented as \r, on ASCII table it is = Decimal 13 or Hex D (0xD).

When any data is returned from the switch, the data will also be followed by an End Of
Line character (EOL).

Notes - All Interfaces: Upon requesting status output characters MUST be received by the
requesting device. Failure to do this will prevent further use of the matrix.

Access Code
Some commands require an access code number to be included with the command. This code
prevents inadvertent operation of system modifying commands. The access code is 73.

5.7 SETUP COMMANDS

Matrixsize command sets the matrix size. The syntax for this command is:

matrixsize mtx# #mods #rlys

mtx#: For mainframes this is 0, for Mesa expansion systems this is the matrix number
for the expansion chassis.

#mods: The maximum number of modules for the chassis.

#rlys: The maximum number of relays per module.

Example: matrixsize 0 16 8 Sets the # of modules to 16 and the maximum number of relays per
module to 8 for a mainframe chassis (mtx is 0).

Typing matrixsize and hitting the enter key will return the current settings and chassis type (for
Mesa systems all of the expansion chassis settings will be returned as a list).

P Commands (Except for communications settings these are set at the factory to the correct
value for your system and should not need to be altered)

• P0 n 73 Set maximum number of matrices to ‘n’. For Mainframes n = 1, for Mesa
Control n = number of expansion chassis

• P6 n 73 n can be 1 or 0. 1 turns RTS/CTS handshaking on, 0 turns RTS/CTS
handshaking off. This setting only applies to serial communication.

• P7 n 73 n can be 1 or 0. 1 turns Use RAM on, 0 turns Use RAM off.

• P8 n 73 n can be 0 to 6. Sets the default list (configuration) to load at power up if Use
RAM is on.

• P10 n 73 Set maximum number of modules to ‘n’ for a Mainframe system. For Mesa
Systems sets the maximum number of modules for Matrix 0;

• P11 n 73 Set maximum number of modules in Matrix 1 of a Mesa System to ‘n’.

• P12 n 73 Set maximum number of modules in Matrix 2 of a Mesa System to ‘n’.

• P13 n 73 Set maximum number of modules in Matrix 3 of a Mesa System to ‘n’.

• P14 n 73 Set GPIB address to ‘n’. n can be 0 to 31.

• P19 n 73 Set the baud number to ‘ n’. See RS232 configuration section for
corresponding baud rate to baud number.

• P20 n 73 Set maximum number of relays to ‘n’ for a Mainframe system. For Mesa
Systems sets the maximum number of relays for Matrix 0;

• P90 n 73 Set the system ID number to ‘n’. Used in large systems to differentiate between
chassis.

5.8 SWITCH COMMANDS

General Notes

For LAN and RS232, after sending any command the Cytec control will return an integer
Answerback character if Answerback (TCPAnswerback for LAN) is ON.
Answerback/TCPAnswerback is turned on by default and is Cytec’s preferred operation since it
allows you to verify commands are accepted before continuing.

If the command was a switch operation command such as Latch (L) or Unlatch (U), the
character will be a meaningful status response where 1 = switch latched and 0 = switch
unlatched. This may be used to verify that the command was received correctly.

Any other commands sent will also generate an answerback character which may be either a 1 or

0 and either character will indicate the command was received but the value is meaningless so
either is acceptable.

Answerback may be turned off when using LAN or RS232 although it is not recommended.
Answerback can also include a termination character for the LAN or RS232 interface.

Error Characters

If a command is sent incorrectly, an error character will be generated and added to the
answerback character. Since the answerback character may be a 1 or 0, there may be two values
for error characters as described below.

Answerback returned:
Dec Hex
1 30 Latch completed without errors.
0 31 Unlatch completed without errors.
2 or 3 32 or 33 Unknown command, first character unrecognizable.
4 or 5 34 or 35 Incorrect entries, number or type of entries incorrect.
6 or 7 36 or 37 Entries out of limits, switch point out of usable range.
8 or 9 38 or 39 Invalid access code, number 73 not included when required.

Delays to Prevent Errors

It is important to recognize that with modern computers and control interfaces, it is possible to
stream commands to the switch matrix faster than the relays can physically operate. Many
electro-mechanical relays may take between 2 to 20 ms to close or open. This can result in
unpredictable results if certain operations are streamed together without considering this delay.

A good example of this type of problem occurs if a Latch command is sent and is immediately
followed by a status request. Many of Cytec’s products actually base status on current flow
through the relay drives so it is possible to send a command and request status before the relay
has physically operated, resulting in incorrect status feedback.

Typically, a 5 to 20 ms delay between commands requiring feedback can ensure that this is never
an issue.

L,U,X – Latch, Unlatch, Multiplex Commands

Syntax: Cmd Switch
Cmd Module, Switch
Cmd Matrix, Module, Switch
The specified switchpoint is operated on. Note: For mainframe systems the matrix
number will be 0.

(Cmd = ‘L’, ‘U’ or ‘X’)
L = Latch = Turn switch ON Closes the specified point, all others unaffected.

U = Unlatch = Turn switch OFF Opens the specified point, all others are unaffected.
X = Multiplex = Clear + Latch Opens all points, then Latches the specified point.

E.g. “U0 2 3” Matrix 0, Module 2, Switch 3 is opened. (OFF)
“L0 1 3” Matrix 0, Module 1, Switch 3 is closed. (ON)
“L0 1” Module 0, Switch 1 is closed. (ON)
“L2 3 7” Matrix 2, Module 3, Switch 7 is closed. (ON)
“X0 3 0” Clear all switch points (turn them all OFF) then Latch Matrix 0, Module 3,
Switch 0.

If a single integer value is sent, the control module assumes it is a switch value and defaults to
the last module value sent. If two integers are sent, the control module assumes they are a
module and switch value and defaults to the last matrix value sent.

E.g. “L3 2 3” Matrix 3, Module 2, Switch 3 is closed (ON). Then, “L1 4” Assumes Matrix 3.
Matrix 3, Module 1, Switch 4 is closed (ON). Then,“L5” Assumes Matrix 3, Module 1. Matrix 3,
Module 1, Switch 5 is closed (ON).

Some Cytec programming examples may refer to Mod #, Rly # (Relay #). The terms Switch
(Sw) and Relay (Rly) mean the same thing. For Unidirectional matrix switches the Module #
may be thought of as Input #, and the Switch or Relay # may be thought of as the Output #.

C - Clear Command

Syntax: C
All points in the chassis are opened.

E.g. "C" All switches in the chassis are opened.

For IEEE488.2, The C command is the same as the *RST (reset) function.

5.9 STATUS COMMAND

The Status and Interrogate commands return information to the user so they can
determine what state each switch point is in before proceeding. The commands can be used
to simply check the switch configuration, to verify connections, or to prevent unwanted
connections.

The information returned by these commands can be different depending on what type of
system you have. Please find the Status or Interrogate section for your specific system
before writing code that is dependent on the returned values.

Syntax: S Returns Status of entire mainframe chassis.
S0 Module# Returns Status of specified Module#.
S0 Module# Switch# Returns Status of specified Switch point.

Status may be requested of a single switch point or for the entire chassis. After receipt of the
Status command the Matrix will return a character or string of characters representing the status,
open or closed, of a switch point or switch points. A one, '1', signifies a closed switch point
(ON) and a zero, '0', an open switch point (OFF).

In the case of a single switch point Status a single character is returned followed by an end of
line.

The S command sent by itself will return a row / column pattern of 1’s and 0’s that mimic the
LED display on the front panel (if equipped), where the columns are the Module # and the Rows
are the Switch #.

Eg. A 16 Module, 8 Switch Matrix (your configuration may be different):
Send: "S" Status of chassis
Receive: "0001000100000000" eol Switch 0, Module 3 and 7 closed
 "0000000000000000" eol Switch 1, none closed
 "1111111111111111" eol Switch 2, all closed
 "1000000000000001" eol Switch 3, Module 0 and 15 closed
 "1010101010101010" eol Switch 4, odd Modules closed
 "0101010101010101" eol Switch 5, even Modules closed
 "0110000000000000" eol Switch 6, Module 1 and 2 closed
 "0000000000000110" eol Switch 7, Module 13 and 14 closed
 “0”eol Answerback character

If the Answerback function is on, the last 1 or 0 before the EOL will be the Answerback
character and the value is a “don’t care”. For LAN Communication, if Answerback + termination
character is ON (TCPAnswerback set to 2), the termination characters [] will be the last
characters returned – this is in order to enable a coder to read the entire response with one chunk
of code, (read until char returned equals ‘]’).

5.10 INTERROGATE COMMAND

Syntax: I

The Interrogate function will return a list of all closed (ON) switch points. Each switch point
will be followed by an “end of line” (EOL). The switch point is listed as the Module# and then
Switch#. For matrix applications such as a 16x16 this often translates into “Input # then Output
#” or “Output # then Input #”. Since many systems are bi-directional Input vs Output may be
dependent on how you are using it. For uni-directional systems, such as VDM, or DXM, the
input vs output relationship will be carved in stone and you should be familiar with it.

 <I> Request interrogation.
 Receive: <Module#><comma><space><Switch#><EOL>

 Eg. Send “I”
 Receive “0, 0” eol Module 0, Switch 0 Closed. End of line.

 “1, 6” eol Module 1, Switch 6 Closed. End of line.
“3, 2” eol Module 3, Switch 2 Closed. End of line.
“0” eol Answerback character (if enabled). End of line.

For system such as a DX/256x256 the “I” command may return up to 256 addresses. Be sure
your buffer size can handle the amount of returned data.

For Unidirectional matrix switches, specifically DX, DXM, VDX, VDM and TX, the
Module # may be thought of as Input #, and the Switch or Relay # may be thought of as the
Output #.

.

5.11 OTHER COMMANDS

F - Front Panel
Syntax: F n 73 n = 0 or 1

Front panel lock-out will be initiated by the receipt of a 0 character and enabled by the receipt of
a 1 character followed by the access code. The access code prevents inadvertent lock-out from
occurring. Lock-out will prevent any operation of the system from the front panel until it is
terminated from the remote (F 1) or power is turned off then on. Preset to panel enabled at
power on.

Eg. "F 0,73" Lock-out local operation.
 "F 1 73" Enable local operation.

P - Program
Syntax: P n1,n2,73

The program command allows the operator to setup matrix dependent variables. These include
matrix switch configuration and certain interface functions. Use of the P commands is
complicated and varies greatly between systems. Your system should have been provided with
the correct P command set-up.

If you need to change the matrix configuration, number of allowed modules, or other obscure
set-up configurations on your system we recommend you contact Cytec and we can walk you
through the P commands needed for your specific system. Please provide the serial # of your
system when you contact us.

N - Revision Number (Same as IEEE488 *IDN?)
Syntax: N

The 'N' command will cause the matrix to return its current revision number followed by an
integer identifier, followed by an end of line.

Eg. Send: "N" Request revision Number
Receive: "Cytec 11-21-60, IF-12, 2.12, 0" eol Text string indicating revision.

Where: ACytec@ = manufacturer.
A11-21-60" = control module board number.
A2.12" = Firmware Revision # (example).
A0" = Integer identifier.

Note: When requesting the Revision number, all characters must be received before the system
can be resumed. The text string received from the >N= Command will vary depending on the type
of system.

Integer identifier

The N command now includes a single byte which can be used as an identifier for Cytec
systems. The identifier is a single byte integer so it may 0 to 255. WE do not assign this and it
has no meaningful relationship to any product. It is simply a number which may be assigned to a
chassis so that the end user can acknowledge that a specific Cytec chassis is communicating. It
is up to the customer to assign the number and keep track of it. It allows them to poll multiple
chassis and know that the one they are talking to is, for example, the JX/256 that they assigned
the identifier A13" to.

Command to enter or change the number:

P90 n 73 where n is the number from 0 to 255

5.12 INPUT / OUTPUT vs MODULE / SWITCH NOMENCLATURE

Most of the switching systems sold by Cytec are completely bi-directional and can be used in a
variety of ways by the customer so it is impossible for us to use the terms Input and Output, even
though it is what probably makes the most sense to the end user when connecting signals to the
switch.

We label and control the switches using Module# and Switch# to avoid this confusion since for
most systems either can be considered an Input or an Output.

5.13 LIST MANAGEMENT

Lists can be set most easily through the device webpage, which can be accessed by typing the IP
address for the system into any browser address bar. Currently, Cytec switches allow only nine
saved lists and list 0 is always the current latched points. Valid values for n are 1-9.

• BS n 73: Saves the current latched switchpoints in List n
• BL n 73: Clears the switch and loads the switch points in List n.
• BD n 73: Displays the switch points in List n.
• BC n 73: Clears List n.

5.14 MATRIX COMMAND SUMMARY

COMMAND FUNCTION

L sw Latch switch point.
L mod, sw

U sw Unlatch switch point.
U mod, sw

X sw Multiplex switch point.
X mod, sw

C Clear entire system.

S Return status.
S mod, sw

I Interrogate Closed Points.

F 0/1 73 Disable/Enable Front Panel.

P parameter value 73 Program parameter.

N Revision Number

RS232 Specific Commands

R baud, RTS/CTS 73 Baud Rate, RTS/CTS operation.

A 0/1 73 Disable/Enable Answerback.

E 0/1 73 Disable/Enable Echo.

V 0/1 73 Disable/Enable Verbose.

TCP/IP Specific Commands

TCPANSWERBACK 0/1/2 Disable/Enable Answerback/Termination

IFCONFIG aaa.aaa.aaa.aaa nnn.nnn.nnn.nnn a = ip address in dotted decimal format
 n = subnet mask in dotted decimal format

SNET TCP PORT n m Where n = equals one of two sockets and m is the port number

5.15 IF-12 (RS232/LAN/GPIB) DEFAULT CONFIGURATION SETTINGS

System parameters can be set most easily through the device webpage, which can be accessed by
typing the IP address for the system into any browser address bar.

Default Values

TCP Settings:
Port 0 8080
Port 1 8081
Socket Timeout 60 seconds
TCPAnswerback 1 (on)
TelNet Lock 0 (off)

Serial Settings:
Answerback 1 (on)
Verbose 0 (off)
Echo 0 (off)
Baudrate 9600
RS Handshake 1 (RTS/CTS)

GPIB Settings:
GPIB Address 7

Front Panel Settings:
Mux Config 0 (Single 32) only for 16 or 32 channel systems
Front Panel 1 (on)

Miscellaneous Settings:
Use RAM (startup) 0 (off)
Default List 0 (currently latched switchpoints)
Sys ID Number 0

5.16 LCD DISPLAY/KEYPAD MANUAL CONTROL OPTION

The Keypad/Display option allows manual control of the matrix from the front panel. Keypad
operation is always enabled at power on but may be disabled by the remote command, >F 0 73=.

Display
The display contains two lines with sixteen characters per line. The top line displays matrix
commands and numeric entry. The bottom line displays the status of the entry or operation. The
display will also show the last command entered from the remote computer interface when the
front panel is enabled.

Keypad
The keypad consists of ten numeric keys, four function keys, a space key and an enter key.

Key Function
0-9 Numeric entries.
space Delimits between numeric entries.
L Latch operation.
U Unlatch operation.
X Multiplex operation.
C Clear operation.
ENTR Execute displayed operation.

Operation
A matrix command key, L, U, X or C, MUST be pressed before numeric entry keys. Pressing
any key except a matrix command key causes the message Enter Cmd First to be displayed.
After pressing a matrix command key the command and a cursor are displayed. The switch point
to be operated on may now be entered with the numeric and space keys. The entry format is the
same as described in the MATRIX OPERATION section and described briefly by the following
table:

Command Key Display Line 1 Line 2
L Lat _ Enter Point
U Unl _ Enter Point
X Mux _ Enter Point
C Clr _ Enter Matrix

The numeric keypad now allows selection of the Module and Relay (Input and Output) to be
operated on. Each entry may be multiple digits and a space must be pressed between selections.

Key Line 1 Display Line 2 Message
L Lat _ Enter Point
1 Lat 1_
Space Lat 1 _
2 Lat 1 2_
3 Lat 1 23_
Enter Key Lat 1 23_ 1

The ENTR key may now be pressed to execute the displayed operation. If the displayed entry is
incorrect or the operation is not desired, pressing any matrix command key will clear the display
and restart the entry.

Status Display
After the ENTR key is pressed, the displayed operation is attempted to be executed by the
control module. If the execution is successful, a Point Closed or Point Open message will be
displayed on line 2. If the operation cannot be executed, an error message will be displayed.

Line 2 Message Status
Ready Displayed after power on.
Enter Point The ENTR key has not been pressed, command and selection

mode.
Point Closed The selected point was closed.
Point Open The selected point was opened.
Points Open All points opened, Clear operation.
***Err: limits The selected point is outside the programmed size of the matrix.
***Err: entry An incorrect entry was selected.

Front Panel Disable
The >F= command allows enabling or disabling front panel operation. If the front panel is
disabled, no operation can be performed from the keypad.

Remote Command Line 1 Line 2
 F 0 73 Panel Disabled
 F 1 73 Panel Enabled

Contrast and LED Backlight Adjustment
Controls are provided to adjust the LCD contrast and LED backlight level. These controls
should only need adjustment in extremely bright or dim environments or for acute viewing
angles. Both LCD and LED circuits have temperature sensing elements that will automatically
adjust the output level for changes in the ambient temperature.

5.17 MEMORY SANITATION PROCEDURE

Cytec’s IF-12 uses the NXP MCF54415 microprocessor with 32 MB of non-volatile flash
memory which is used to store user lists and labels for the webpage factory application and
128kB of user parameter storage. If the unit is ever removed from service or needs to be
sanitized for disposal the memory can be erased using one of the following methods.

1) Easiest with least damage. Contact Cytec for factory application .bin file at: sales@cytec-
ate.com or 1-585-381-4740.

2) Permanent. Remove cover. Locate IF-12. Remove the NetBurner core board by
disconnecting the LAN cable and prying the module off the IF-12 board. Destroy the NetBurner
board. Unit is non functional until IF-12 has been replaced.

mailto:sales@cytec-ate.com
mailto:sales@cytec-ate.com

APPENDIX - EXAMPLE PROGRAMS

Java LAN Programming Example:

import java.net.*; // for Socket
import java.io.*; // for IOException and Input/OutputStream

public class if12_lantester
{
 static final int N_MODS = 4;
 static final int N_RLYS = 12;

 /**-----------------test if12 utility functions---------------------------------------*/

 public static void main(String[] args) throws IOException, InterruptedException
 {
 if (args.length != 2) // Test for correct # of args. IP Address and Port
 throw new IllegalArgumentException("Parameter(s): <IP Address> [<Port>]");

 String server = args[0]; // Server name or IP address
 int servPort = Integer.parseInt(args[1]); // Port Number

 // Create socket that is connected to server on specified port
 Socket socket = new Socket(server, servPort);
 System.out.println("Connected to server...sending string");
 InputStream in = socket.getInputStream();
 OutputStream out = socket.getOutputStream();

 if12_lan if12 = new if12_lan();

 // Initialize Device: Turn Verbose & Echo off, Answerback on
 if (if12.init_LAN(in,out) < 0)
 throw new SocketException("Error Initializing Device");

 // Clear Device: Unlatch all relays
 if (if12.matrix_clear(in,out) != 48)
 throw new SocketException("Error clearing Device");

 // Latch and Unlatch Relays
 for (int mod =0; mod < N_MODS; mod++)
 {
 for (int rly=0;rly<N_RLYS;rly++)
 {
 if (if12.point_ops(in,out,'L',0,mod,rly) != 49)
 {
 System.out.printf("Error latching Mod %d Rly %d\n",mod,rly);

 break;
 }
 System.out.printf("Latched Mod %d Rly %d\n",mod,rly);
 if (if12.point_ops(in,out,'U',0,mod,rly) != 48)
 {
 System.out.printf("Error unlatching Mod %d Rly %d\n",mod,rly);
 break;
 }
 System.out.printf("Unlatched Mod %d Rly %d\n",mod,rly);
 }
 }

 socket.close(); // Close the socket and its streams
 }
}

public class if12_lan
{
 private int bytesRcvd,bytesSent;
 private byte[] rcvBuffer = new byte[256];

 public if12_lan()
 {
 bytesRcvd = 0;
 bytesSent = 0;
 }
 /**------------------Initialize Device-----------------------------------*/
 public int init_LAN(InputStream in, OutputStream out) throws IOException,
 InterruptedException
 {
 String str =new String("E0 73;V0 73;TCPANSWERBACK 1\n");
 // Convert string to bytes for writing to output stream
 byte[] byteBuffer = str.getBytes();
 // Send the encoded string to the if12
 out.write(byteBuffer);
 Thread.sleep(1000); //Wait one second
 // Receive the response from the device
 if ((bytesRcvd = in.read(rcvBuffer,0,9)) != 9)
 return -1;
 return 0;
 }
 /**---------------------clear matrix-------------------------------------*/
 public int matrix_clear(InputStream in,OutputStream out) throws IOException
 {
 String str = new String("C\n");
 // Convert string to bytes for writing to output stream

 byte[] byteBuffer = str.getBytes();
 // Send the encoded string to the if12
 out.write(byteBuffer);
 // Receive the response from the device
 if ((bytesRcvd = in.read(rcvBuffer,0,3)) == -1)
 return -1;
 return rcvBuffer[0];
 }
 /**------------------switchpoint operations-----------------------------*/
 public int point_ops(InputStream in, OutputStream out,char cmd,int mtx,
 int mod,int rly) throws IOException, InterruptedException
 {
 //Format command string to send to device
 String cmd_line = String.format("%c%d %d %d\n",cmd,mtx,mod,rly);
 // Convert string to bytes for writing to output stream
 byte[] byteBuffer = cmd_line.getBytes();
 // Send the encoded string to the if12
 out.write(byteBuffer);
 Thread.sleep(100); //Wait 1/10 second
 // Receive the response from the device
 if ((bytesRcvd = in.read(rcvBuffer,0,3)) == -1)
 return -1;
 return rcvBuffer[0];
 }
}

C LAN Programming Example

/* Cytec Matrix Test Program for LAN */
/* This program uses Microsoft's WS2_32 Library */
/* and winsock2.h. These are available in the */
/* Microsoft SDKs and can be downloaded from */
/* Microsoft's Developer Network */
/* https://msdn.microsoft.com/en-us/default.aspx */

#include <stdio.h>
#include <winsock2.h>
#include <stdlib.h> /* for exit() */

int init_LAN(int sock);
int point_ops(int sock,int cmd, int mtx, int mod, int rly);
int matrix_clear(int sock);
void DieWithError(char *errorMessage);

#define MAX_MTX 1
#define MAX_MOD 4
#define MAX_RLY 12

int main(int argc, char *argv[])
{
 int sock;
 char *servIP = "10.0.0.144"; /*Default IP Address*?
 struct sockaddr_in servAddr; /* IP address */
 unsigned short servPort = 8080; /* Port */
 int mtx, mod, rly,status;

 if (argc == 3)
 {
 servIP = argv[1];
 servPort = atoi(argv[2]);
 }

 WSADATA wsaData; /* Structure for WinSock setup communication */
 WSAStartup(0x202, &wsaData); /* Load Winsock 2.2 DLL */

 /* Create a reliable, stream socket using TCP */
 if ((sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP))<0)
 DieWithError("socket() failed");

 /* Construct the server address structure */
 memset(&servAddr, 0, sizeof(servAddr)); /* Zero out structure */
 servAddr.sin_family = AF_INET; /* Internet address family */
 servAddr.sin_addr.s_addr = inet_addr(servIP); /* Server IP address */
 servAddr.sin_port = htons(servPort); /* Server port */

 /* Establish the connection to the server */
 if (connect(sock, (struct sockaddr *) &servAddr, sizeof(servAddr))<0)
 DieWithError("connect() failed");

 /* Initialize Device using init_LAN Function */
 init_LAN(sock);

 /* Send Clear Command to Device with matrix_clear Function*/
 if ((status = matrix_clear(sock)) != 48)
 printf("Error clearing device/n");

 /* Simple looping through switchpoints */

 for(mtx=0; mtx<MAX_MTX; mtx++)

 {
 for (mod=0; mod<MAX_MOD; mod++)
 {
 for (rly=0; rly<MAX_RLY; rly++)
 {
 if (((status = point_ops(sock,'L',mtx,mod,rly))) !=49)
 printf("Error point %d %d %d not closed\n",mtx,mod,rly);
 else
 printf("Latched point %d %d\n",mod, rly);

 if (((status = point_ops(sock,'U',mtx,mod,rly))) !=48)
 printf("Error point %d %d %d not open\n",mtx,mod,rly);
 else
 printf("Unlatched point %d %d\n",mod, rly);
 }
 }
 }
 closesocket(sock);
 WSACleanup(); /* Cleanup Winsock */
 return 0;
}
/*--------------Initialize---------------------------*/

int init_LAN(int sock)
{
 char rcvString[40]; /* Buffer for device response */
 int rcvStringLen; /* Length of device response */
 void DieWithError(char *errorMessage);
 /* Initialize Device */
 if ((send(sock, "E0 73;V0 73;TCPANSWERBACK 1\n", 28, 0)) != 28)
 {
 DieWithError("send() failed");
 }
 Sleep(1000); /* Wait for Response from Device */
 if ((rcvStringLen = recv(sock, rcvString, 9, 0)) < 9)
 {
 DieWithError("recv() failed or connection closed prematurely");
 }
 rcvString[rcvStringLen] = '\0';
 return 0;
}

/*-----------------Clear Matrix----------------------*/

int matrix_clear(int sock)
{

 char rcvString[8]; /* Buffer for device response */
 int rcvStringLen; /* Length of device response */

 if ((send(sock,"C\n",2,0)) != 2)
 DieWithError("send() failed");

 Sleep(200); /* Wait for Response

 /* Receive Response from Device */
 if ((rcvStringLen = recv(sock, rcvString, 10, 0)) <= 0)
 DieWithError("recv() failed or connection closed prematurely");
 rcvString[rcvStringLen] = '\0';
 int status = rcvString[0] & 0x3f;

 return status;
}
/*-----------Switchpoint Operation------------------ */

int point_ops(int sock,int cmd, int mtx, int mod, int rly)
{
 char cmd_str[40]; /* Formatted command string */
 char rcvString[8]; /* Buffer for device response */
 int rcvStringLen; /* Length of device response */

 /* Format String */
 sprintf(cmd_str,"%c%d %d %d\n",cmd,mtx,mod,rly);

 /* Send Command to Device */
 if ((send(sock,cmd_str,strlen(cmd_str),0)) != strlen(cmd_str))
 DieWithError("send() failed");

 Sleep(200); /* Wait for Response

 /* Receive Response from Device */
 if ((rcvStringLen = recv(sock, rcvString, 10, 0)) <= 0)
 DieWithError("recv() failed or connection closed prematurely");
 rcvString[rcvStringLen] = '\0';
 int status = rcvString[0] & 0x3f;

 return status;
}

/*------------Error Handling Function---------------------*/

 void DieWithError(char *errorMessage)

{
 fprintf(stderr,"%s: %d\n", errorMessage, WSAGetLastError());
 getchar();
 exit(1);
}

LabWindows RS232 Programming Example

*== Cytec Main Frame Control Include File rs232.h
==================================*/

int RS232port;

/*== GLOBAL FUNCTION DECLARATIONS
===*/

int CYRS232Initialize (int com_port, int baud_rate);
int CyIf3_read (char *buf);
int CyIf3_write (char *buf);
int CyIf3_close (void);

/*=============================== END */

#include <ansi_c.h>
#include <utility.h>
/*===*/
/* Cytec Main Frame RS232 LabWindows/CVI Driver Module */
/*===/*

#include <rs232.h>
#include <formatio.h>
#include "CYRS232.h"

/*= STATIC VARIABLES
==*/
/* port contains the number of the port opened for the instrument module. */
/* cmd is a buffer for RS-232 I/O strings. */
/* rscnt contains the number of bytes transferred during a read or write. */
/* CyIf3_err: the error variable for the instrument module */
/*===*/
//static int port;
static char cmd[26];
static int rscnt;
static int CyIf12_err;

/*= UTILITY ROUTINES
==*/
int CyIf12_invalid_short_range (short val, short min, short max, int err_code);
int CyIf12_invalid_integer_range (int val, int min, int max, int err_code);
int CyIf12_invalid_longint_range (long val, long min, long max, int err_code);
int CyIf12_invalid_real_range (double val, double min, double max, int err_code);
int CyIf12_read_data (char *buf, int cnt, int term);
int CyIf12_write_data (char *buf, int cnt);
int CyIf12_device_closed (void);
void CyIf12_setup_arrays (void);

int main()
{
 CYRS232Initialize(12,9600);

}

/*===*/
/* This function opens a com port for the instrument module, queries for */
/* ID, and initializes the instrument to a known state. */
/*===*/
int CYRS232Initialize(int com_port, int baud_rate)
{
 char s[40];

 if (CyIf12_invalid_integer_range (baud_rate, 110, 19200, -2) != 0)
 return -14;

 CyIf12_err = OpenComConfig (com_port, "", baud_rate, 0, 8, 1, 512, 512);
 if (CyIf12_err<0) {
 return CyIf12_err;
 }
 CyIf12_err = SetComTime (com_port, 1.0);
 if (CyIf12_err<0) {
 return CyIf12_err;
 }

/*
 Set port to the number of the port just opened.
*/

 RS232port = com_port;

/* Initialize communication, Answerback ON, Verbose, Echo OFF */

 Fmt (s, "A1,73;V0,73;E0,73\r");
 CyIf12_err = (ComWrt (RS232port, s, StringLength(s)));
 if (CyIf12_err<0) {
 return CyIf12_err;
 }
 Delay(.1);

 CyIf12_err = ComRdTerm(RS232port, s, 40, '\r');
 if (CyIf12_err<0) {
 return CyIf12_err;
 }
 Delay (1.0);

 FlushInQ (com_port);
 FlushOutQ (com_port);

 return CyIf12_err;
}

/*===*/
int CyIf12_read (char *buf)
{
 return(CyIf12_read_data (buf, 40, '\r'));

}

int CyIf12_write (char *buf)
{
 return (CyIf12_write_data (buf, StringLength(buf)));

}

/*===*/
/* This function closes the port for the instrument module and sets the */
/* port to zero. */
/*===*/
int CyIf12_close (void)
{
/* Check for device closed */

 if (CyIf12_device_closed())
 return CyIf12_err;

/*
 Close the com port. If error, set CyIf3_err = rs232err+300.

*/

 CloseCom(RS232port);
 if (rs232err != 0) {
 CyIf12_err = rs232err+300;
 return CyIf12_err;
 }

 RS232port = 0;
 return CyIf12_err;
}

/* = UTILITY ROUTINES ===*/

/*===*/
/* Function: Invalid Short Range */
/* Purpose: This function checks a short to see if it lies between a */
/* minimum and maximum value. If the value is out of range, set */
/* the global error variable to the value err_code. If the */
/* value is OK, error = 0. */
/*===*/
int CyIf12_invalid_short_range (short val, short min, short max, int err_code)
{
 if ((val < min) || (val > max)) {
 CyIf12_err = err_code;
 return -1;
 }
 return 0;
}
/*===*/
/* Function: Invalid Integer Range */
/* Purpose: This function checks an integer to see if it lies between a */
/* minimum and maximum value. If the value is out of range, set */
/* the global error variable to the value err_code. If the */
/* value is OK, error = 0. */
/*===*/
int CyIf12_invalid_integer_range (int val, int min, int max, int err_code)
{
 if ((val < min) || (val > max)) {
 CyIf12_err = err_code;
 return -1;
 }
 return 0;
}
/*===*/
/* Function: Invalid Long Integer Range */

/* Purpose: This function checks a long integer to see if it lies between */
/* a minimum and maximum value. If the value is out of range, */
/* set the global error variable to the value err_code. If the */
/* value is OK, error = 0. The return value is equal to the */
/* global error value. */
/*===*/
int CyIf12_invalid_longint_range (long val, long min, long max, int err_code)
{
 if (val < min || val > max) {
 CyIf12_err = err_code;
 return -1;
 }
 return 0;
}
/*===*/
/* Function: Invalid Real Range */
/* Purpose: This function checks a real number to see if it lies between */
/* a minimum and maximum value. If the value is out of range, */
/* set the global error variable to the value err_code. If the */
/* value is OK, error = 0. */
/*===*/
int CyIf12_invalid_real_range (double val, double min, double max, int err_code)
{
 if ((val < min) || (val > max)) {
 CyIf12_err = err_code;
 return -1;
 }
 return 0;
}
/*===*/
/* Function: Device Closed */
/* Purpose: This function checks to see if the module has been */
/* initialized. If the device has not been opened, a 1 is */
/* returned, 0 otherwise. */
/*===*/
int CyIf12_device_closed (void)
{
 if (RS232port == 0) {
 CyIf12_err = 232;
 return -1;
 }
 return 0;
}

/*===*/
/* Function: Read Data */

/* Purpose: This function reads a buffer of data from the instrument. The */
/* return value is equal to the global error variable. */
/*===*/
int CyIf12_read_data (char *buf, int cnt, int term)
{
 rscnt = ComRdTerm(RS232port, buf, cnt, term);
 FlushInQ (RS232port);

 return rscnt;
}

/*===*/
/* Function: Write Data */
/* Purpose: This function writes a buffer of data to the instrument. The */
/* return value is equal to the global error variable. */
/*===*/
int CyIf12_write_data (char *buf, int cnt)
{
 rscnt = ComWrt (RS232port, buf, cnt);

 return rscnt;
}

/*===*/
/* This function is called by the init routine to initialize global arrays */
/* This routine should be modified for each instrument to include */
/* instrument-dependent commmand arrays. */
/*==*/
void CyIf12_setup_arrays (void)
{
}
/*= THE END
===*/

LabWindows GPIB Programming Example

/*===*/

/*= Cytec IF-11 IEEE488 Control Module Include File ========================*/

/*== GLOBAL CONSTANT DECLARATIONS
===*/

/* Replace 10 with the maximum number of devices of this type being used. */
#define IF12_MAX_INSTR 10

/*== GLOBAL FUNCTION DECLARATIONS
===*/
int if12_init (int, int, int *);

/** INSERT INSTRUMENT-DEPENDENT FUNCTION DECLARATIONS HERE **/

int if12_operate(int, int, int, int, int *);
int if12_write (int, char *);
int if12_read (int, int, char *, int *);
int if12_close (int);

/*=== END INCLUDE FILE
==*/

/*===*/

#include <gpib.h>
#include <utility.h>
#include <formatio.h>
#include "cy_if12.h"

/*= INSTRUMENT TABLE
==*/
/* address array: contains the GPIB addresses of opened instruments. */
/* bd array: contains the device descriptors returned by OpenDev. */
/* instr_cnt: contains the number of instruments open of this model type. */
/*===*/
static int address[IF12_MAX_INSTR + 1];
static int bd[IF12_MAX_INSTR + 1];
static int instr_cnt;

/*= STATIC VARIABLES
==*/
/* cmd is a buffer for GPIB I/O strings. */
/* if12_err: the error variable for the instrument module */
/* ibcnt: contains the number of bytes transferred by GPIB reads and */
/* writes. See the GPIB library I/O Class for more information */
/*===*/
static char cmd[50];
static int if12_err;

/*= UTILITY ROUTINES
==*/

int if12_open_instr (int, int *);
int if12_close_instr (int);
int if12_invalid_integer_range (int, int, int, int);
int if12_device_closed (int);
int if12_read_data (int, char *, int);
int if12_write_data (int, char *, int);
int if12_set_timeout (int, int, int *);
void if12_setup_arrays (void);

/*===*/
/* Function: Initialize */
/* Purpose: This function opens the instrument, queries the instrument */
/* for its ID, and initializes the instrument to a known state. */
/*===*/
int if12_init (addr, rest, instrID)
int addr;
int rest;
int * instrID;
{
 int ID;

 if (if12_invalid_integer_range (addr, 0, 30, -1) != 0)
 return if12_err;
 if (if12_invalid_integer_range (rest, 0, 1, -3) != 0)
 return if12_err;

 if (if12_open_instr (addr, &ID) != 0)
 return if12_err;

 if (rest) {
 if (if12_write_data (ID, "C", 1) != 0) {
 if12_close_instr (ID);
 return if12_err;
 }
 Delay(0.01);
 }
 if12_setup_arrays ();
 *instrID = ID;

 return if12_err;
}

/*===*/
/* - Operations: Latch, Unlatch, Multiplex, Clear and Status --- */

int if12_operate (instrID, Operation, Module, Relay, Status)

int instrID, Operation, Module, Relay;
int *Status;
{
 char s[20];

 *Status = -1;
 if (Operation == 'C') {
 Fmt(s,"C");
 if (if12_write_data(instrID, s, StringLength(s)) != 0)
 return if12_err;
 Delay(0.01);
 }
 else {
 Fmt(s,"%c %d %d", Operation, Module, Relay);
 if (if12_write_data(instrID, s, StringLength(s)) != 0)
 return if12_err;
 }
 if (if12_read_data(instrID, s, 2) != 0)
 return if12_err;
 *Status = s[0] & 0xf;
 return if12_err;
}

/*===*/
/* Function: Write To Instrument */
/* Purpose: This function writes a command string to the instrument. */
/*===*/
int if12_write (instrID, cmd_string)
int instrID;
char *cmd_string;
{
 if (if12_invalid_integer_range (instrID, 1, IF12_MAX_INSTR, -1) != 0)
 return if12_err;
 if (if12_device_closed(instrID) != 0)
 return if12_err;

 Fmt (cmd, "%s<%s", cmd_string);
 if (if12_write_data (instrID, cmd, NumFmtdBytes()) != 0)
 return if12_err;

 return if12_err;
}

/*===*/
/* Function: Read Instrument Buffer */
/* Purpose: This function reads the output buffer of the instrument. */

/*===*/
int if12_read (instrID, numbytes, in_buff, bytes_read)
int instrID;
int numbytes;
char *in_buff;
int *bytes_read;
{
 if (if12_invalid_integer_range (instrID, 1, IF12_MAX_INSTR, -1) != 0)
 return if12_err;
 if (if12_device_closed(instrID) != 0)
 return if12_err;

 *bytes_read = 0;
 if (if12_read_data (instrID, in_buff, numbytes) != 0)
 return if12_err;

 *bytes_read = ibcnt;

 return if12_err;
}

/*===*/
/* Function: Close */
/* Purpose: This function closes the instrument. */
/*===*/
int if12_close (instrID)
int instrID;
{
 if (if12_invalid_integer_range (instrID, 1, IF12_MAX_INSTR, -1) != 0)
 return if12_err;
 if (if12_device_closed (instrID))
 return if12_err;

 if12_close_instr (instrID);

 return if12_err;
}

/*= UTILITY ROUTINES ===*/

/*===*/
/* Function: Open Instrument */
/* Purpose: This function locates and initializes an entry in the */
/* Instrument Table and the GPIB device table for the */
/* instrument. The size of the Instrument Table can be changed */
/* in the include file by altering the constant */

/* IF12_MAX_INSTR. The return value of this function is equal */
/* to the global error variable. */
/*===*/
int if12_open_instr (addr, ID)
int addr;
int *ID;
{
 int i, instrID;

 instrID = 0;
 if12_err = 0;

/* Check to see if the instrument is already in the Instrument Table. */

 for (i = 1; i <= IF12_MAX_INSTR; i++)
 if (address[i] == addr) {
 instrID = i;
 i = IF12_MAX_INSTR;
 }

/* If it is not in the instrument table, open an entry for the instrument. */

 if (instrID <= 0)
 for (i = 1; i <= IF12_MAX_INSTR; i++)
 if (address[i] == 0) {
 instrID = i;
 i = IF12_MAX_INSTR;
 }

/* If an entry could not be opened in the Instrument Table, return an error.*/

 if (instrID <= 0) {
 if12_err = 220;
 return if12_err;
 }

/* If the device has not been opened in the GPIB device table (bd[ID] = 0),*/
/* then open it. */

 if (bd[instrID] <= 0) {
 if (instr_cnt <= 0)
 CloseInstrDevs("if12");
 bd[instrID] = OpenDev ("", "if12");
 if (bd[instrID] <= 0) {
 if12_err = 220;
 return if12_err;

 }
 instr_cnt += 1;
 address[instrID] = addr;
 }

/* Change the primary address of the device */

 if (ibpad (bd[instrID], addr) < 0) {
 if12_err = 233;
 return if12_err;
 }

 *ID = instrID;
 return if12_err;
}

/*===*/
/* Function: Close Instrument */
/* Purpose: This function closes the instrument by removing it from the */
/* GPIB device table and setting the address and bd[instrID] to */
/* zero in the Instrument Table. The return value is equal to */
/* the global error variable. */
/*===*/
int if12_close_instr (instrID)
int instrID;
{
 if (bd[instrID] != 0) {
 CloseDev (bd[instrID]);
 bd[instrID] = 0;
 address[instrID] = 0;
 instr_cnt -= 1;
 }
 else
 if12_err = 221;

 return if12_err;
}

/*===*/
/* Function: Invalid Integer Range */
/* Purpose: This function checks an integer to see if it lies between a */
/* minimum and maximum value. If the value is out of range, set */
/* the global error variable to the value err_code. If the */
/* value is OK, error = 0. The return value is equal to the */
/* global error value. */
/*===*/

int if12_invalid_integer_range (val, min, max, err_code)
int val;
int min;
int max;
int err_code;
{
 if (val < min || val > max)
 if12_err = err_code;
 else
 if12_err = 0;

 return if12_err;
}

/*===*/
/* Function: Device Closed */
/* Purpose: This function checks to see if the module has been */
/* initialized. If the device has not been opened, set the */
/* global error variable to 232, 0 otherwise. The return value */
/* is equal to the global error value. */
/*===*/
int if12_device_closed (instrID)
int instrID;
{
 if (bd[instrID] <= 0)
 if12_err = 232;
 else
 if12_err = 0;

 return if12_err;
}

/*===*/
/* Function: Read Data */
/* Purpose: This function reads a buffer of data from the instrument. The */
/* return value is equal to the global error variable. */
/*===*/
int if12_read_data (instrID, buf, cnt)
int instrID;
char *buf;
int cnt;
{
 if (ibrd(bd[instrID], buf, (long)cnt) <= 0)
 if12_err = 231;
 else
 if12_err = 0;

 return if12_err;
}

/*===*/
/* Function: Write Data */
/* Purpose: This function writes a buffer of data to the instrument. The */
/* return value is equal to the global error variable. */
/*===*/
int if12_write_data (instrID, buf, cnt)
int instrID;
char *buf;
int cnt;
{
 if (ibwrt(bd[instrID], buf, (long)cnt) <= 0)
 if12_err = 230;
 else
 if12_err = 0;

 return if12_err;
}

/*===*/
/* Function: Set Timeout */
/* Purpose: This function changes or disables the timeout of the device. */
/* Refer to the LabWindows Standard Libraries Reference Manual */
/* for timeout codes. The return value is equal to the global */
/* error variable. */
/*===*/
int if12_set_timeout (instrID, tmo_code, old_timeout)
int instrID;
int tmo_code;
int *old_timeout;
{
 *old_timeout = ibtmo (bd[instrID], tmo_code);
 if (ibsta <= 0)
 if12_err = 239;
 else
 if12_err = 0;

 return if12_err;
}

/*===*/
/* Function: Setup Arrays */
/* Purpose: This function is called by the init routine to initialize */

/* static arrays. */
/* This routine should be modified for each instrument to */
/* include instrument-dependent commmand arrays. */
/*===*/
void if12_setup_arrays ()
{
}
/*=== THE END ===*/

LabView Drivers

Labview Drivers are available for download at https://cytec-ate.com/downloads/drivers/

https://cytec-ate.com/downloads/drivers/

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

DRAWN BY:APPROVED BY

SHEET

REVISION:

DRAWING NUMBER

DATE: 25-May-2000

JX SIGNAL I/O MODULE

4-058

F:\BDrawings\jx-sch\4-058mod.Sch OF

SIZE: TITLE:B

REVISED FROM:

1 1

REAR VIEW

1 2

19 20

RHB

11
2

32
4

53
6

74
8

95
10

6
17

1118
12

1319
14

1520
16

1721
18

1922
20

SHIELD (GND)

11
2

32
4

53
6

74
8

95
10

6
17

1118
12

1319
14

1520
16

1721
18

1922
20

SHIELD (GND)

20 PIN HEADER 20 PIN HEADERMOTHERBOARD MOTHERBOARD

JX16/L1, L2 L3
SIGNAL CONNECTIONS

JX16/4AB
SIGNAL CONNECTIONS

0-7 HI

0-7 LO

0-7 GUARD

GND

+5

+12

GND

8-15 GUARD

8-15 LO

8-15 HI

0-7 A

0-7 B

0-7 C

0-7 D

+5

GND

8-15 D

8-15 C

8-15 B

8-15 A

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

DRAWN BY:APPROVED BY

-

SHEET

REVISION:

DRAWING NUMBER

DATE: 24-Oct-2022

IF-12 Mainframe Ctrl Module

11-21-50/01

11-21-50-01.sch OF

SIZE: TITLE:
B

1 4

KJA

C1
0.1uF

C2

0.1uF

C3

0.1uF

C4

0.1uF

C5 0.1uF

VCC

RS232 Control

DB0
DB1

A0

DB2

A1

DB3

A2

DB4

A3

DB5

A4

DB6
DB7

SHEET 2

A0
1

A1
2

A2
3

E1
4

E2
5

E3
6

Y0
15

Y1
14

Y2
13

Y3
12

Y4
11

Y5
10

Y6
9

Y7
7

GND
8

VCC
16

U14 74LCX138

A0
1

A1
2

A2
3

E1
4

E2
5

E3
6

Y0
15

Y1
14

Y2
13

Y3
12

Y4
11

Y5
10

Y6
9

Y7
7

GND
8

VCC
16

U15 74LCX138

WRITES

READS

WR0
WR1

RD0

MAIN CONTROLLER

VCC

WR2
WR3

WR6

488IOW

RD1
RD2
RD3

488IOR

RD6

1
2

3
4

S1

KSC2-4-1-J

1

2 3 4 5 6 7 8 9

RP1 10K
VCC

C41
0.1uF

+ C42
47uF

+5V

CR1

CR2

VCC C18

0.1uF

VCC C17

0.1uF

R3 1.4K

R4 1.4K CR3
LED

CR4
LED

R9
10K

JP1

+C43

47uF

+5V

Vin
3

Vout
2

A
d

j.
1

U2 LD1084V

R1
301

R2

510

+ C44
47uF

VCC

1
2
3
4
5

J4

0.156X5

SH 4

SH 4

SH 3

SH 3

1 6 2 7 3 8 4 9 5

J3 D9

RES

VCC

C34 0.1uF

C35 0.1uF

RES_IN

JP2
R10
10K

+ C45
47uF

+ C46
47uF

E0
1

E1
2

E2
3

VSS
4

VCC
8

WC
7

SCL
6

SDA
5

U18 M24C02-F

E0
1

E1
2

E2
3

VSS
4

VCC
8

WC
7

SCL
6

SDA
5

U19 M24C02-F

VCC
VCC

C39
0.1uF

C40

0.1uFR11
3.3K

R12
3.3K

VCC
20

A0
2

A1
3

A2
4

A3
5

A4
6

A5
7

A6
8

A7
9

GND
10

DIR
1

OE
19

B7
11

B6
12

B5
13

B4
14

B3
15

B2
16

B1
17

B0
18

U3 74LCX245

CS4

CS4

R/W

R/W

IRQ1

A8
A9
A10

OE/RE

SH 2

SH 2

VCC C16
0.1uF

CS0

CS7

SH 2

SH 3

SH 4

VCC

1234567891
0

J5 CON-10PINS

C2+
1

V+
27

DOUT2
10

C1+
28

C2-
2

C1-
24

V-
3

Vcc
26

ROUT1
19

GND
25

ROUT2
18

RIN1
4

ROUT2B
20

RIN2
5

ROUT3
17

RIN3
6

DIN1
14

DOUT1
9

DIN2
13

RIN4
7

ROUT4
16

RIN5
8

DIN3
12

DOUT3
11

ROUT5
15

FORCEON
23

FORCEOFF
22

INVALID
21

U1

MAX3243

GND
J1-49

GND
J1-50

VSTBY
J1-3

D16
J1-12

RESET_IN
J1-28

RESET_OUT
J1-30

GND
J2-46

GND
J2-1

GND
J2-49

A0
J1-32

CS1
J1-5

CS4
J1-6

CS5
J1-7

A1
J1-33

A2
J1-34

A3
J1-35

A4
J1-36

A5
J1-37

A6
J1-38

A7
J1-39

A8
J1-40

A9
J1-41

A10
J1-42

A11
J1-43

A12
J1-44

A13
J1-45

A14
J1-46

A15
J1-47

D17
J1-15

D18
J1-14

D19
J1-17

D20
J1-16

D21
J1-19

D22
J1-18

D23
J1-21

D24
J1-20

D25
J1-23

D26
J1-22

D27
J1-25

D28
J1-24

D29
J1-27

D30
J1-26

D31
J1-29

VCC3V
J1-48

GND
J1-1

GND
J1-2

VCC3V
J2-2

VCC3V
J2-50

UART0_TX
J2-4

UART0_RX
J2-3

IRQ3
J2-26

BE0
J1-10

UART0_RTS
J2-38

UART0_CTS
J2-29

UART1_TX
J2-22

UART1_RX
J2-21

UART1_RTS
J2-23

UART1_CTS
J2-24

IRQ1
J2-45

I2C0_SCL
J2-42

I2C0_SDA
J2-39

OE/RE
J1-8

R/W
J1-4

PH3
J2-16

PH4
J2-15

PH6
J2-18

PH7
J2-17

J1

MOD54415

W/R

BE0

C36 0.1uF

C37 0.1uF

8
9

10

U17C

74LCX00

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

DRAWN BY:APPROVED BY

-

SHEET

REVISION:

DRAWING NUMBER

DATE: 24-Oct-2022

IF-12 Mainframe Ctrl Module

11-21-50/02

11-21-50-02.sch OF

SIZE: TITLE:
B

2 4

KJA

+5V

A0
A1
A2
A3
A4

VCC

C33

0.1UF

SHEET 3SHEET 1

IEEE488 CONTROL

488IOW
488IORSH 1

RES

SH 1

CS4

C19
0.1uF

C20
0.1uF

C21
0.1uF

C22
0.1uF

C23
0.1uF

R6
10K

VCC

R5
10K

1
P2A

26 Pin Header

2
P2B

3
P2C

4
P2D

5
P2E

6
P2F

7
P2G

8
P2H

9
P2I

10
P2J

11
P2K

12
P2L

13
P2M

14
P2N

15
P2O

16
P2P

17
P2Q

18
P2R

19
P2S

20
P2T

21
P2U

22
P2V

23
P2W

24
P2X

25
P2Y26
P2Z

G
N

D
1

G
N

D
5

G
N

D
9

G
N

D
1

2

G
N

D
1

6

G
N

D
1

9

G
N

D
2

4

G
N

D
2

5

G
N

D
2

8

G
N

D
3

2

G
N

D
3

5

G
N

D
4

1

G
N

D
4

7

G
N

D
5

3

G
N

D
5

5

G
N

D
5

9

G
N

D
6

1

G
N

D
6

7

G
N

D
7

0

G
N

D
7

5

G
N

D
8

1

G
N

D
8

7

G
N

D
8

9

G
N

D
9

6

G
N

D
1

0
2

+
3

.3
V

7

+
3

.3
V

1
4

+
3

.3
V

2
1

+
3

.3
V

2
3

+
3

.3
V

3
0

+
3

.3
V

5
2

+
3

.3
V

6
9

+
3

.3
V

8
8

+
3

.3
V

1
2

0

HWORDN
116

DACKN
115

DIO8N
18

DIO7N
15

DIO6N
11

DIO5N
8

DIO4N
17

DIO3N
13

DIO2N
10

DIO1N
6

EOIN
20

RENN
22

DAVN
26

NRFDN
27

NDACN
29

IFCN
31

SRQN
33

ATNN
34

DATA0
90

DATA1
73

DATA2
71

DATA3
68

DATA4
66

DATA5
65

DATA6
63

DATA7
62

DATA8
60

DATA9
56

DATA10
54

DATA11
51

DATA12
49

DATA13
48

DATA14
46

DATA15
45

ADDR0
104

ADDR1
100

ADDR2
101

ADDR3
97

ADDR4
98

CSN
112

IORDN
106

IOWRN
107

RESETN
113

CLK
144

SRQ_DATA
126

SRQ_OEN
127

TADCS
129

TCK
2

TRIG
132

TDI
3

TDO
4

TMS
142

DRQ
110

INTR
109

PWR_GOOD
39

REMT
133

VIO_SEL
95

LADCS
130

TRST
139

+
3

.3
V

1
2

3

+
3

.3
V

1
3

1

+
3

.3
V

1
3

5

+
3

.3
V

1
3

7

+
3

.3
V

1
4

0

V
IO

3
8

V
IO

4
4

V
IO

5
0

V
IO

5
8

V
IO

6
4

V
IO

7
2

V
IO

7
8

V
IO

8
4

V
IO

9
2

V
IO

9
9

V
IO

1
0

5

V
IO

1
1

1

V
IO

1
1

7

ADDR5
93

ADDR6
94

G
N

D
1

0
8

G
N

D
1

1
4

G
N

D
1

1
8

G
N

D
1

2
1

MODE
125

G
N

D
1

2
8

G
N

D
1

3
6

G
N

D
1

3
8

G
N

D
1

4
1

G
N

D
1

4
3

V
IO

4
3

V
IO

9
1

V
IO

7
4

V
IO

5
7

V
IO

1
0

3

V
IO

8
0

V
IO

7
6

V
IO

4
2

V
IO

7
7

V
IO

8
5

V
IO

3
7

V
IO

8
3

V
IO

8
6

V
IO

8
2

V
IO

7
9

U16 TNT5002

EOH
1

GND
2

OUT
3

VCC
4

Y1

40MHz

VCC

+5V

VCC

VCC

VCC

1
2
3
4
5
6
7
8
9

RP8
10K

C24
0.1uF

C25
0.1uF

C26
0.1uF

C27
0.1uF

C28
0.1uF

C29
0.1uF

VCC

C30
0.1uF

C31
0.1uF

C32
0.1uF

+5V

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

1

2
3

U17A

74LCX00

11
12

13

U17D

74LCX00

IRQ1

C38
0.1uF

VCC

4

5
6

U17B

74LCX00

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

DRAWN BY:APPROVED BY

-

SHEET

REVISION:

DRAWING NUMBER

DATE: 24-Oct-2022

IF-12 Mainframe Ctrl Module

11-21-50/03

11-21-50-03.sch OF

SIZE: TITLE:
B

3 4

KJA

OE
1

CLK
11

0D
2

0Q
19

1D
3

1Q
18

2D
4

2Q
17

3D
5

3Q
16

4D
6

4Q
15

5D
7

5Q
14

6D
8

6Q
13

7D
9

7Q
12

VCC
20

GND
10

U4 74HCT574

G1
1

G2
19

A7
9

Y7
11

A6
8

Y6
12

A5
7

Y5
13

A4
6

Y4
14

A3
5

Y3
15

A2
4

Y2
16

A1
3

Y1
17

A0
2

Y0
18

VCC
20

GND
10

U9 74LCX541

LCD CTRL

+5V

VCC

PNL_I/O0
PNL_I/O1
PNL_I/O2
PNL_I/O3
PNL_I/O4
PNL_I/O5
PNL_I/O6
PNL_I/O7

PNL_CTL0
PNL_CTL1
PNL_CTL2
PNL_CTL3
PNL_CTL4
PNL_CTL5
PNL_CTL6
PNL_CTL7

SH 1
WR6

1

2 3 4 5 6 7 8 9

RP3
10K+5V

RD6
SH 1

C6

0.1uF

C7
0.1uF

SHEET 2

16

4
6
8

10
12

14
15

1
3

2

5
7
9

11
13

P1
+5V

FRONT PANEL

INTERFACE

HEADER

CS0

SHEET 4

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

SH 1

R7
10K

VCC

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

DRAWN BY:APPROVED BY

-

SHEET

REVISION:

DRAWING NUMBER

DATE: 24-Oct-2022

IF-12 Mainframe Ctrl Module

11-21-50/04

11-21-50-04.sch OF

SIZE: TITLE:
B

4 4

KJA

CONTROL

SHEET 3

OE
1

CLK
11

0D
2

0Q
19

1D
3

1Q
18

2D
4

2Q
17

3D
5

3Q
16

4D
6

4Q
15

5D
7

5Q
14

6D
8

6Q
13

7D
9

7Q
12

VCC
20

GND
10

U5 74LCX/HCT574

G1
1

G2
19

A7
9

Y7
11

A6
8

Y6
12

A5
7

Y5
13

A4
6

Y4
14

A3
5

Y3
15

A2
4

Y2
16

A1
3

Y1
17

A0
2

Y0
18

VCC
20

GND
10

U10 74LCX541

VCC

SH 1 WR0

1

23456789

RP4
10K

+V

SH 1

C8

0.1uF

C12
0.1uF

OE
1

CLK
11

0D
2

0Q
19

1D
3

1Q
18

2D
4

2Q
17

3D
5

3Q
16

4D
6

4Q
15

5D
7

5Q
14

6D
8

6Q
13

7D
9

7Q
12

VCC
20

GND
10

U6 74LCX/HCT574

G1
1

G2
19

A7
9

Y7
11

A6
8

Y6
12

A5
7

Y5
13

A4
6

Y4
14

A3
5

Y3
15

A2
4

Y2
16

A1
3

Y1
17

A0
2

Y0
18

VCC
20

GND
10

U11 74LCX541

VCC

SH 1 WR1

1

23456789

RP5
10K

+V

SH 1

C9

0.1uF

C13
0.1uF

OE
1

CLK
11

0D
2

0Q
19

1D
3

1Q
18

2D
4

2Q
17

3D
5

3Q
16

4D
6

4Q
15

5D
7

5Q
14

6D
8

6Q
13

7D
9

7Q
12

VCC
20

GND
10

U7 74LCX/HCT574

G1
1

G2
19

A7
9

Y7
11

A6
8

Y6
12

A5
7

Y5
13

A4
6

Y4
14

A3
5

Y3
15

A2
4

Y2
16

A1
3

Y1
17

A0
2

Y0
18

VCC
20

GND
10

U12 74LCX541

VCC

SH 1 WR2

1

23456789

RP6
10K

+V

SH 1

C10

0.1uF

C14
0.1uF

OE
1

CLK
11

0D
2

0Q
19

1D
3

1Q
18

2D
4

2Q
17

3D
5

3Q
16

4D
6

4Q
15

5D
7

5Q
14

6D
8

6Q
13

7D
9

7Q
12

VCC
20

GND
10

U8 74LCX/HCT574

G1
1

G2
19

A7
9

Y7
11

A6
8

Y6
12

A5
7

Y5
13

A4
6

Y4
14

A3
5

Y3
15

A2
4

Y2
16

A1
3

Y1
17

A0
2

Y0
18

VCC
20

GND
10

U13 74LCX541

VCC

SH 1 WR3

1

23456789

RP7
10K +V

SH 1

C11

0.1uF

C15
0.1uF

+V

+V +V

+V

RD0

RD1 RD3

RD2

CS7
SH 1

1
P6A

CON-16PIN

2 P6B

3
P6C

4 P6D

5
P6E

6 P6F

7
P6G

8 P6H

9
P6I

10 P6J

11
P6K

12 P6L

13
P6M

14 P6N

15
P6O

16 P6P

1
P7A

CON-16PIN

2 P7B

3
P7C

4 P7D

5
P7E

6 P7F

7
P7G

8 P7H

9
P7I

10 P7J

11
P7K

12 P7L

13
P7M

14 P7N

15
P7O

16 P7P

1
P8A

CON-16PIN

2 P8B

3
P8C

4 P8D

5
P8E

6 P8F

7
P8G

8 P8H

9
P8I

10 P8J

11
P8K

12 P8L

13
P8M

14 P8N

15
P8O

16 P8P

1
P9A

CON-16PIN

2 P9B

3
P9C

4 P9D

5
P9E

6 P9F

7
P9G

8 P9H

9
P9I

10 P9J

11
P9K

12 P9L

13
P9M

14 P9N

15
P9O

16 P9P

1

2
3
4
5
6
7
8
9

RP2
10K

VCC

JP3
Voltage Select

VCC

+V

+5V

LCX HCT

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

R8
10K

VCC

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

DRAWN BY:APPROVED BY

SHEET

REVISION:

DRAWING NUMBER

DATE: 18-Dec-2013

MESA II EIF Module - 34 Pin

16-16-50-1/1

16-16-50-1-01.Sch OF

SIZE: TITLE:B
1 2

KJA

VCC 20A02

B0 3A14

B1 5A26

B2 7A38

B3 9

GND10 A=B 19
IN E1

A411

B4 12A513

B5 14A615

B6 16A717

B7 18

U1

74AC521

VCC 20

A02

A13
A24

A35

A46

A57

A68

A79

GND 10

DIR1

OE19

B7 11B6 12B5 13B4 14B3 15B2 16B1 17B0 18

U2

74LCX245

A01

A12

A23

E14

E25
E36

Y0 15

Y1 14

Y2 13

Y3 12

Y4 11
Y5 10

Y6 9

Y7 7GND8

VCC 16
U3

74LCX138

G11

G219

A79

Y7 11

A68

Y6 12

A57

Y5 13

A46

Y4 14

A35

Y3 15

A24

Y2 16

A13

Y1 17

A02

Y0 18

VCC 20

GND 10

U4

74LCX541

1

2 3 4 5 6 7 8 9

RP5
10K

1 2 3 4 5

10 9 8 7 6

SW1
SW-DIP5

+3.3V

D0
D1
D2
D3
D4
D5
D6
D7

+3.3V

+3.3V

+3.3V

WR
RD
A0
A1

+3.3V

WRC

WRA
WRB

BA0
BA1
BA2
BA3
BA4

BA5

BA6

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7

ON

SHEET 2

A12E1L

A14E1N

A16E1P

A18E1R

A19E1S

A20E1T

A21E1U

A22E1V

A23E1W

A24E1X

A25E1Y

A26E1Z

A28E1\

A30E1^

A32E1`

A33E1a

A34E1b

A35E1c

A36E1d

A37E1e

A38E1f

A39E1g

A40E1h

A41E1i

A42E1j

A43E1k

A44E1l

A45E1m

A46E1n

A47E1o

A48E1p

B12E1}

B14 E1

B16 E1

B18E1ƒ

B19E1„
PCI EXPRESS 98

B20E1…

B21E1†

B22E1‡

B23E1ˆ

B24E1‰

B25E1Š

B26E1‹

B27E1Œ

B28 E1

B29E1Ž

B30 E1

B31 E1

B32E1‘

B33E1’

B34E1“

B36E1•

B38E1—

B40E1™

B42E1›

B44 E1

B46E1Ÿ

B48E1¡

R1 10K

+3.3V

BA7

C3
0.1uF

+ C1
47uF

+3.3V

CR1

C5

0.1uF

C6
0.1uF

C7
0.1uF

C8
0.1uF

RDGATE

B2E1s

B4E1u

B6E1w

B8E1y

B10E1{

A2E1B

A4E1D

A6E1F

A8E1H

A10E1J

C4
0.1uF

+ C2
47uF

+5V

CR2
C13
0.1uF

VCC

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

DRAWN BY:APPROVED BY

SHEET

REVISION:

DRAWING NUMBER

DATE: 18-Dec-2013

MESA II EIF Module - 34 Pin

16-16-50-1/2

16-16-50-1-02.Sch OF

SIZE: TITLE:B
2 2

KJA

G1 1

G2 19

A7 9

Y711

A6 8

Y612

A5 7

Y513

A4 6

Y414

A3 5

Y315

A2 4

Y216

A1 3

Y117

A0 2

Y018

VCC20

GND10

U5

74LCX541

OE1

CLK11

0D2 0Q 19

1D3 1Q 18

2D4 2Q 17

3D5 3Q 16
4D6 4Q 15

5D7 5Q 14

6D8 6Q 13

7D9 7Q 12

VCC 20

GND 10

U7

74HCT574

OE1

CLK11

0D2 0Q 19

1D3 1Q 18

2D4 2Q 17

3D5 3Q 16

4D6 4Q 15

5D7 5Q 14

6D8 6Q 13

7D9 7Q 12

VCC 20

GND 10

U6

74HCT574

OE1

CLK11

0D2 0Q 19

1D3 1Q 18

2D4 2Q 17

3D5 3Q 16

4D6 4Q 15

5D7 5Q 14
6D8 6Q 13

7D9 7Q 12

VCC 20

GND 10

U8

74HCT574

1

2
3
4
5
6
7
8
9

RP1
10K

1

2
3
4
5
6
7
8
9

RP3
10K

1

2
3
4
5
6
7
8
9

RP2
10K

1

2
3
4
5
6
7
8
9

RP4
10K

OUT0

OUT8

OUT9

OUT10
OUT11

OUT12
OUT13
OUT14

OUT15

OUT16

OUT17

OUT18

OUT19

OUT26
OUT25

OUT28

OUT27

OUT29
OUT30

OUT0
OUT1
OUT2
OUT3
OUT4
OUT5
OUT6
OUT7

OUT8
OUT9
OUT10
OUT11
OUT12
OUT13
OUT14
OUT15

OUT16
OUT17
OUT18
OUT19
OUT20
OUT21
OUT22
OUT23

OUT24
OUT25
OUT26
OUT27
OUT28
OUT29
OUT30
OUT31

OUT0
OUT1
OUT2
OUT3
OUT4
OUT5
OUT6
OUT7

OUT24
OUT25
OUT26
OUT27
OUT28
OUT29
OUT30
OUT31

OUT8
OUT9
OUT10
OUT11
OUT12
OUT13
OUT14
OUT15

OUT16
OUT17
OUT18
OUT19
OUT20
OUT21
OUT22
OUT23

+5V

+3.3V

+5V

+5V

D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

WRA

WRB

WRC

ON

SHEET 1

C11
0.1uF

C10
0.1uF

C12
0.1uF

C9
0.1uF

RDGATE

D0
D1
D2
D3
D4
D5
D6
D7

1

2
3

U9A

74HC00

4

5
6

U9B

8
9

10

U9C

11
12

13

U9D

OUT24

R2
10K

+5V

CR3
1N4148

+ C14
10uF

PX SIGNALS ALL OTHERS

Stat Stat

Mod 0 Mod 0
Mod 1 Mod 1
Mod 2 Mod 2
Mod 3 Mod 3
Mod 4 Mod 4
Mod 5 Mod 5
Mod 6 Mod 6
Mod 7 Mod 7

nc Rly1
nc Rly2
nc Rly4
nc Rly8

Mod8 Mod8
*Mod8 *Mod8

Clk *Rly8

Sload Mux(Rst)

Data Sw-Stb

Load L/*U
nc St-Stb

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

J1

IDH34RT

MUX

JP1
+5V

Jumper To Supply +5V
To Expansion Chassis

1 14-20-70 x 3U 15.62" CHASSIS ASSY
15.62" DEEP x 19" WIDE x 5-1/4" HIGH

2 24-01-20 JX/256 CAGE ASSY

3 24-02-21 REAR PANEL

4 AC SELECTABLE POWER ENTRY

5 12V-3.4A POWER SUPPLY

6 15-14-22 5-1/4" FRONT PANEL

1

2

3

4

5

6

OR OPTIONAL 12V-1.7A POWER SUPPLY

7 24-08-10 BACKPLANE

8 4-058 SIG I/O (JX Only)

7

8

9

9 4-041-1 EXP. INTERFACE MODULE

24-02-30 POWER WIRING DIA.

6-015-3 MESA E.I.F. ASSY

PER A.P.D.- OMIT L2 FERRITE

24-04-00

12V-3.4A

C
O

N
TR

O
L

SW
IT

C
H

 M
O

D
. #

0

SW
IT

C
H

 M
O

D
. #

15

SI
G

 I/
O

OPTIONAL 12V-1.7A
USE IN PLACE OF 12V-3.4A PER ORDER

DATE: DRAWN BY:

DRAWING NUMBER:

SIZE: TITLE:

COMMENTS:

D

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

CAD FILE:

TOL. +/- .010" U.O.S.

24-04-00.DW2 JAR7/6/95

JX/256 & RSS/256 E - P.S. ASSY

EXPANSION w/ POWER SUPPLY

UPDATED PARTS LISTDR11/12/01A

B 5/1/02 DR UPDATED ASSY LIST

4/23/03C DR UPDATED WIRE DIA.

AGray
Text Box
APPROVED 6/24/19

1 Chassis Assembly

Fabrication BOM: 24-20-140

2 24-01-20 JX/256 Cage Assy

3 24-02-21 Rear Panel

4 AC Selectable Power Entry

5 5V-3A Power Supply

6 12V-8.5A LS100-12 P.S.

7 Front Panel w/ Power LED

1

2

3

4

5

6

7

8 24-17-10 High Power Backplane

9 4-058 SIG I/O

10 4-041-1 Control Interface Mod.

8

9

10

Per A.P.D.- Omit L2 Ferrite

Assembly BOM: 24-20-240

24-20-00

6-32 x 3/8" SPH
(10 Places)

4-40 x 5/16" SPH
w/ 4-40 Kempnut

(12 Places)

4-40 x 1/2" PFH
(16 Places)

8-32 Unitrax Screws
(23 Places)

6-32 x 3/8" SPH
(8 Places)

6-32 x 9/16" PPH
(12 Places)

1st Hole

5th Hole Every 3rd Hole

Corner notch
on bottom

Cytec P/N Description Qty

FAS1008 4-40 x 5/16" Slotted Panhead 12

FAS1013 4-40 Kempnut 12

FAS1006 4-40 x 1/2" Phillips Flathead 16

FAS1004 6-32 x 3/8" Slotted Panhead 18

FAS1007 6-32 x 9/16" Phillips Panhead 12

FAS1058 8/32 Unitrax Screw 23

FAS1149 M3 x 0.5 x 5MM Phillips Flathead 2

M3 x 0.5 x 5MM PFH
(2 Places)
(Farside)

C
O

N
T

R
O

L

S
W

IT
C

H
 M

O
D

.
#

0

S
W

IT
C

H
 M

O
D

.
#

1
5

S
IG

 I
/O

DATE: DRAWN BY:

DRAWING NUMBER:
.5

.75.25

1.00

SIZE: TITLE:

COMMENTS:

D

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

CAD FILE:

TOL. +/- .010" U.O.S.

24-20-00 Rev A.dcd DR7/19/13

JX/256 EXPANSION HIGH POWER ASSY

EXPANSION w/ POWER SUPPLY

- 7/19/13 DR Drawing Start

A 10/16/23 PV Changed 12v to LS Supply

AC POWER SUPPLY WIRING

GND

31 4 2

Power Entry Mod

FN393-605-11

REAR VIEW

AC SELECTABLE MOD

WHT

GRN

Schaffner

Standard

L
N
G
-V
-V
+V
+V

4
5

1
3

2

(+
)

(-)

BLUEBLK

YEL

GND

CON1131 to M.B.

3

RES1029
680 Ohm

LED0283

5

2

4

1

* All Wire 20 AWG

7/19/13 24-20-30 Rev A.dcd DR

JX-HP Power Supply Wiring

24-20-30

- 7/19/13 DR Drawing Start

A 10/16/23 PV Updated for LS Supply

DATE: DRAWN BY:

DRAWING NUMBER:

SIZE: TITLE:

COMMENTS:

B

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

CAD FILE:

TOL. +/- .010" U.O.S.

1

1 2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

Comments: Drawing Number:

Size: Title:
Date: CAD File: Drawn By:

TOL. +/- 0.01" U.O.S.

A

Cytec P/N Description Qty

FAS1008
FAS1013
FAS1006
FAS1004
FAS1007
FAS1058

4-40 x 5/16" Slotted Panhead
4-40 Keps Nut
4-40 x 1/2" Phillips Flathead

6-32 x 3/8" Slotted Panhead
6-32 x 9/16" Phillips Panhead

8-32 Unitrax Screw

12
12
16
18
12
23

J4

P
1

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

9

9

Chassis Assembly
Fabrication BOM: 24-21-140
Assembly BOM: 24-21-240

JX/256 Cage Assembly (24-01-20)

JX Rear Panel (24-21-21)

Power Entry Module (SWX1000)

Power Supplies:

Front Panel as Ordered:
No Manual Control (24-21-22)
Manual Control (24-22-22) Shown

JX/256 Motherboard Module
(24-08-10)

JX Signal I/O Module (4-058)

Control Interface Module

A
B

5V - 3A (PWS0293)

12V - 3.4A (PWS0292)

A

B

S
ig

na
l I

/O

S
w

itc
h

M
od

ul
e

#1
5

S
w

itc
h

M
od

ul
e

#0

C
on

tro
l

4-40 x 1/2" PFH
16 Places

8-32 Unitrax Screw
23 Places

6-32 x 3/8" SPH
8 Places

4-40 x 5/16" SPH
w/ 4-40 Keps Nut
12 Places each

6-32 x 3/8" SPH
10 Places

6-32 x 9/16" PPH
12 Places

8/19/14 24-21-00 Rev A.dxf DR

JX/256-MF w/ IF-9 to IF-12
24-21-00

-

A

8/19/14

4/9/19

DR

PV

Drawing Start

Added New Interfact Mod 24-26-10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sig I/OCont.

4 5 6

7 8 9

1 2 3

0ENTER SPACE

MUX

C

U

L

I

O

Cat 6
Switchcraft

110-120V

220-240V

1

IEEE-488

RS-232

24-21-91

DATE: DRAWN BY:

DRAWING NUMBER:

1.0

SIZE: TITLE:

COMMENTS:

D

CAD FILE:

TOL. +/- .010" U.O.S.

24-21-91.ai FHC5/25/25

JX/256-MF- Front and Rear - IF-12

1

1 2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

Deburred Initial

5

1

3

2

Comments:

4

Drawing Number:

Size: Title:
Date: CAD File: Drawn By:

TOL. +/- 0.01" U.O.S.

A

- OUT -S +S + OUT

1
P

3
N'

4
P'

1 1

2
N

5

G

1
3

2
4

- OUT -S +S + OUT

Standard A/C Selectable
Schaffner P/N: FN393-605-11

SWX1000

Front Panel LED Wiring

Black
Yellow
Blue
White
Green

20 AWG (WIR1010)
20 AWG (WIR1012)
20 AWG (WIR1055)
20 AWG (WIR1006)
18 AWG (WIR1040)

5V - 3A
(PWS0293)

12V - 3.4A
(PWS0292)

Green

Red

Yellow

Control Module JX/256 Motherboard
CON1131 CON1131

J3 J2

24-08-10

GND + 5V

G
N

D

+ 5V

+ 24/28V
 B

lue

GND

Long Leg
+

-

+ 12
RES1029

LED0283
Green

AC Wiring DC Wiring

8/19/14 24-21-30.dxf DR

JX Power Supply Wiring
24-21-30

- 8/19/14 DR Drawing Start

1

1 2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

Comments: Drawing Number:

Size: Title:
Date: CAD File: Drawn By:

TOL. +/- 0.01" U.O.S.

A

1 1

1

1

1

1

1

1

1

J1

P2

P6

P7

P9

P2

J3

P1

P7

P6

P9

P8

J4

24-26-10
JX mainframe Adapter Module

Control Module
Per Order

(IF-11 Shown)

99-02-30

1:1 26 pin Ribbon Cable

4/9/19 24-21-31.dxf PV

JX/256 Control Wiring Diagram

24-21-31

- 4/9/19 PV Drawing Start

